Writing in Science (Piktochart)

Screen Shot 2016-02-19 at 8.13.52 AM

At a previous teacher leader corps workshop, I created this infographic (sample screenshot above) about writing strategies in science classes. It also has some tools for teachers as well as resources for students. I also love Piktochart (and infographics in general), which is why I chose that as the medium.


Vocabulary PechaKucha!

Today at PD, I created a student-driven technology lesson for introducing new vocabulary in my academic chemistry class. As a preface: PechaKucha is a presentation format the includes 20 slides, presented for 20 seconds each (for a total of just under 7 minutes).

Blank Student Template:

Make ONE slide related to your term with the following info.

  • Provide TWO definitions that you found
  • Rewrite them into ONE definition in your own words
  • include any variables, units, or formulas that apply
  • include one image to illustrate your word
    • it should take up most of the slide
  • Be able to explain your word for/in 20 seconds

Technology Integration Matrix Review: This lesson falls under adaptation in all categories. I’m okay with that considering I am working towards more technology integration for that group of students.

Phase one complete… (XP points in the classroom)

On Tuesday, I plan to implement phase two of my goal for my AP Biology students this year, which is for them to take a pile of my resources and learn about a unit almost on their own (constructivist theory, for you psych folks). Granted, there will be checkpoints and various discussions throughout this unit, but I want them to eventually be in charge of their daily tasks, both in and out of the classroom.

Phase one involved incorporating an experience point (XP) system in my grading plan. Students gain experience through various instructional activities, and the sum of these experiences at the end of each unit correlates to a rather hefty (30%) portion of their overall grade. This is the first time I have tried anything like this, but I think it is going well. I have been at a loss the past few years as to getting more of my students personally engaged in the process of learning this extremely cumbersome curriculum. Thus far, I think this is the hardest that I’ve had an AP class work overall. I’m not sure if it’s the students themselves or the XP system. Perhaps, both.

Continue reading

Molecular Biology – A PBL Unit for AP Biology

This unit plan was designed as a result of my externship experience at BASF during the summer or 2013.

Here’s a blog post I wrote about the results of that externship.

And here’s a video I made to thank the scientists at BASF for working with me for the two weeks that I was there.

Essential Questions
  • What is the primary source of heritable information, and how are cellular and molecular mechanisms involved in the expression of this heritable information?
  • How can genetic engineering techniques manipulate the heritable information of DNA?
Topics covered
  • plasmid construction
  • polymerase chain reaction
  • bacterial and plant transformation
  • restriction enzymes
  • gel electrophoresis
  • plant physiology
  • GMO crops

The GMO Debate: A stations-based lesson for AP Biology

The Transgenic Crop Debate (Click for links to all stations materials)

What are the pros and cons surrounding GMO crops?

Students must complete station 5 stations (approximately 15 minutes each) to investigate the GMO/Organic food debate. Students should be instructed to pay special attention to the sources of the information and examine these sources for reliability and bias.

Culminating task
  1. What was a misconception you had about GMO foods? About organic foods?
  2. Before this investigation, would you say that you leaned more towards GMOs, organic, or no preference? How about now?
  3. What do you notice about the “facts” you have encountered based on the sources from which they originated?

Is ignorance bliss? – A Lesson on Scientific Thinking

Scientific Thinking Performance Task (click for full document, 30 pages…)

This lesson could be adapted for most any science class. Because the history leading up to the quantum mechanical model is no longer part of the NC curriculum, I’ve included it here to demonstrate the process of science. This lesson was used during the first few days of school, before students had any real knowledge of nuclear chemistry.

Essential Question: What are the moral and/or ethical implications of knowledge?

Task Rationale: This performance task serves to re-introduce students to the scientific method as well as to dispel the misconception that it is a linear, stepwise process. Students are asked to determine how knowledge is gained and how we decide what to do with that knowledge. The goals of this assignment are to: 1) understand that knowledge must be acquired through one’s own personal critique and evaluation, 2) allow students to see that scientific advancement is anything but a linear process, and 3) have students evaluate the benefits vs. harmful applications of acquired knowledge and how they would affect society.

Overview: Students will first determine how they know what they know and what led them to acquiring their current knowledge. The first part of the process includes an investigation into the scientific method and the development of current atomic theory. The second part requires students to analyze materials demonstrating the pros and cons of nuclear chemistry including nuclear power, nuclear warfare, and nuclear medicine for bias, reliability, and information. Students will then choose one of the scientists that developed atomic theory and write a postmortem, argumentative blog post (or essay) taking a stance on whether the scientist would approve of the advances in nuclear chemistry that have resulted from their contributions to atomic theory.

Included in this lesson: student handouts, teacher and student online resources, grading rubrics, alignment standards (for chemistry and American history, and Common Core reading and writing)

5E Lesson – Solutions Stoichiometry

Solutions Stoichiometry 5E Lesson Plan (5 days) (click for full document)

Students will be able to:

  • conduct research into water quality testing for concepts that apply to precipitation reactions
  • make a solution of a known concentration
  • dilute and determine the concentration of the new solution
  • create and collect a precipitate
  • evaluate an unknown solution using stoichiometry
  • report scientific findings in a scientific poster format
  • evaluate peers for scientific methods and reporting via a mini-poster symposium


  • Engage: Introduces the idea of clean water as a commodity (Global Awareness!) This activity is to set the stage for the importance of clean water and how extreme cases can become serious socioeconomic issues. Students will learn ONE technique for analyzing water in the upcoming days.
  • Explore: Determine the molarity of various solutions, especially how to make and dilute them.
  • Explain: Precipitate reactions and stoichiometry. This day follows normal classroom instructions for teaching these concepts.
  • Elaborate: Determine the amount of Barium ions in an unknown water sample
  • Evaluate: Compare your results with the other groups through a poster symposium